Home

Millivolts to Volts Converter

Millivolts to Volts Converter

Millivolts to Volts Converter



Millivolts to Volts (mV to V) converter is a fundamental tool for converting small electrical measurements into standard voltage units. This conversion is essential across electronics, medical devices, and industrial systems where precise low-voltage measurements are required.

Unit Definitions

Millivolt (mV)

  • 1 mV = 0.001 V (10⁻³ V)

  • Common applications:

    • Biomedical signals (ECG, EEG)

    • Sensor outputs (temperature, pressure)

    • Audio signal levels

    • Battery monitoring

Volt (V)

  • SI base unit of electrical potential

  • 1V = potential moving 1 coulomb with 1 joule

  • Standard references:

    • USB power: 5V

    • Car battery: 12V

    • Household outlet: 120V/230V

Conversion Formula

Volts (V)=Millivolts (mV)1,000

Alternative expressions:

  • V = mV × 0.001

  • V = mV × 10⁻³

Conversion Process

  1. Obtain measurement in millivolts

  2. Divide by 1,000 (or multiply by 0.001)

  3. Express result in volts

Example:

500 mV÷1,000=0.5 V

Conversion Table

Millivolts (mV)Volts (V)Common Application
10.001Precision sensor output
100.01Thermocouple measurement
1000.1ECG signal component
5000.5Audio line level
1,0001.0Reference voltage
2,5002.5Sensor full-scale output
5,0005.0USB voltage equivalent

Practical Applications

Medical Devices

  • ECG waveforms (0.5-5mV)

  • EEG signals (0.001-0.1mV)

  • Pulse oximetry signals

Industrial Systems

  • 4-20mA current loops (1-5V equivalent)

  • Load cell outputs (typically 0-20mV/V)

  • RTD temperature sensors

Consumer Electronics

  • Microphone signal levels (1-10mV)

  • Battery voltage monitoring

  • Touchscreen sensor readings

Measurement Techniques

  1. Multimeter Selection:

    • Standard DMMs typically resolve 0.1mV

    • Precision meters resolve 1μV

  2. Connection Methods:

    • 4-wire Kelvin for <10mV measurements

    • Shielded cables for noise reduction

  3. Signal Conditioning:

    • Instrumentation amplifiers

    • Analog filters

    • Proper grounding

Common Error Sources

  1. Lead Resistance: Significant for <10mV measurements

  2. Thermal EMF: ~40μV/°C per dissimilar metal junction

  3. Electromagnetic Interference: Especially in unshielded setups

  4. Ground Loops: Can introduce mV-level errors

Conversion Examples

Example 1: Convert 25mV to volts

25÷1,000=0.025 V

Example 2: Temperature sensor outputs 12.5mV. Express in volts

12.5÷1,000=0.0125 V