Advanced Base Converter
Convert between binary, octal, decimal, hexadecimal and more
Input Value
Options
About Number Bases:
Number bases represent numbers using different radixes. Common bases include binary (2), octal (8), decimal (10), and hexadecimal (16).
Conversion Results
Base | Value |
---|---|
Binary (Base 2) | 11111111 |
Octal (Base 8) | 377 |
Decimal (Base 10) | 255 |
Hexadecimal (Base 16) | FF |
Binary Representation
Input Base
Base 10
Output Base
Base 16
Bit Length
8 bits
Format | Example |
---|---|
Binary Prefix | 0b11111111 |
Octal Prefix | 0o377 |
Hexadecimal Prefix | 0xFF |
Formatted Binary | 1111_1111 |
Number Base Examples
Common values in different number bases for reference:
Decimal | Binary | Octal | Hexadecimal | Base32 | Base64 |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | A | A |
1 | 1 | 1 | 1 | B | B |
2 | 10 | 2 | 2 | C | C |
3 | 11 | 3 | 3 | D | D |
4 | 100 | 4 | 4 | E | E |
5 | 101 | 5 | 5 | F | F |
6 | 110 | 6 | 6 | G | G |
7 | 111 | 7 | 7 | H | H |
8 | 1000 | 10 | 8 | I | I |
9 | 1001 | 11 | 9 | J | J |
10 | 1010 | 12 | A | K | K |
15 | 1111 | 17 | F | P | P |
16 | 10000 | 20 | 10 | QA | Q |
31 | 11111 | 37 | 1F | Z | f |
32 | 100000 | 40 | 20 | BA | g |
63 | 111111 | 77 | 3F | PZ | / |
64 | 1000000 | 100 | 40 | BAA | BA |
100 | 1100100 | 144 | 64 | D4 | ZG |
127 | 1111111 | 177 | 7F | FZ | f/ |
128 | 10000000 | 200 | 80 | GAA | gA |
255 | 11111111 | 377 | FF | PZ | /w |
256 | 100000000 | 400 | 100 | QAA | BA |
511 | 111111111 | 777 | 1FF | PZZ | // |
512 | 1000000000 | 1000 | 200 | BAAA | BAA |
1023 | 1111111111 | 1777 | 3FF | PZZZ | //8 |
1024 | 10000000000 | 2000 | 400 | BAAAA | BBA |
2047 | 11111111111 | 3777 | 7FF | PZZZZ | //8 |
2048 | 100000000000 | 4000 | 800 | BAAAAA | BCA |
4095 | 111111111111 | 7777 | FFF | PZZZZZ | /// |
4096 | 1000000000000 | 10000 | 1000 | BAAAAAA | BDA |
A Base Converter is a tool that transforms numbers between different numeral systems (bases). This is essential in computer science, digital electronics, and mathematics where numbers are represented in various formats like binary (base-2), decimal (base-10), hexadecimal (base-16), and octal (base-8).
Common Number Bases
Base | Name | Digits | Usage |
---|---|---|---|
2 | Binary | 0-1 | Computer systems, digital circuits |
8 | Octal | 0-7 | Unix file permissions, older systems |
10 | Decimal | 0-9 | Everyday arithmetic |
16 | Hexadecimal | 0-9, A-F | Programming, memory addressing |
How Base Conversion Works
1. Converting from Base-N to Decimal (Base-10)
Each digit is multiplied by its positional value (base^position) and summed.
Formula:
Example: Convert binary 1011
to decimal
2. Converting from Decimal to Base-N
Repeated division by the target base, collecting remainders in reverse order.
Steps:
Divide the number by the target base.
Record the remainder.
Repeat with the quotient until it reaches 0.
The converted number is the remainders read in reverse.
Example: Convert 25
to binary (base-2)
→ Binary = 11001
(read remainders upwards)
3. Direct Conversions Between Non-Decimal Bases
Binary ↔ Hexadecimal: Group binary digits into 4-bit nibbles.
10101100
→1010 1100
→A C
→AC
(hex)
Binary ↔ Octal: Group binary digits into 3-bit chunks.
101101
→101 101
→5 5
→55
(octal)
Base Conversion Table (0-15)
Decimal | Binary | Octal | Hexadecimal |
---|---|---|---|
0 | 0000 | 0 | 0 |
1 | 0001 | 1 | 1 |
2 | 0010 | 2 | 2 |
3 | 0011 | 3 | 3 |
4 | 0100 | 4 | 4 |
5 | 0101 | 5 | 5 |
6 | 0110 | 6 | 6 |
7 | 0111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Applications
Programming: Memory addresses in hex (
0xFF
), bitwise operations.Networking: IP addresses in binary (
11000000.10101000...
).Encryption: Large numbers in different bases for cryptography.
Digital Circuits: Binary logic gates, FPGA programming.
Online Base Converters
RapidTables Base Converter
Calculator.net Base Calculator
CyberChef (Advanced Conversions)
Example Conversions
Hex
2F
to Decimal:Decimal
42
to Binary:→ Binary =
101010